

 [image: WrightTools]
WrightTools loads, processes, and plots multidimensional spectroscopy data.

“Multidimensional spectroscopy” (MDS) is a family of diverse analytical techniques that record the response of a material to multiple stimuli—typically multiple ultrafast pulses of light.
Due to its diversity and dimensionality, MDS data is challenging to process and visualize.
WrightTools is a freely available and openly licensed Python package that is made specifically for multidimensional spectroscopy.
It aims to be a core toolkit that is general enough to handle all MDS datasets and processing workloads.
Being built for and by MDS practitioners, WrightTools has an intuitive, high-level, object-oriented interface for spectroscopists.

For a more complete introduction to WrightTools, please click on the badge below to read our short three-page paper in the Journal of Open Source Software (https://doi.org/10.21105/joss.01141).

Status

	PyPI

	version

	[image: pypi-version] [https://badge.fury.io/py/WrightTools]

	conda-forge

	version

	[image: conda-version] [https://anaconda.org/conda-forge/wrighttools]

	status

	[image: azure-pipelines] [https://dev.azure.com/conda-forge/feedstock-builds/_build/latest?definitionId=5100&branchName=master]

	Read the Docs

	stable

	[image: rtd-stable] [http://wright.tools/en/stable/?badge=stable]

	latest

	[image: rtd-latest] [http://wright.tools/en/latest/?badge=latest]

	Published

	JOSS

	[image: joss-badge] [https://doi.org/10.21105/joss.01141]

Contents

	Installation
	conda-forge

	pip

	Quick Start
	Create a Data Object

	Visualize Data

	Process Data

	Save Data

	Learning More

	Data
	Instantiation

	Structure & Attributes

	Processing

	Collection
	Collection

	Artists
	Quick artists

	Interactive artists

	Colors

	Custom figures

	Units

	Datasets

	Contributing
	Preparing

	Contributing

	Style

	The wt5 File Format
	wt5

	HDF5

	Access

	Changes

	WrightTools API
	WrightTools.artists module

	WrightTools.collection package

	WrightTools.data package

	WrightTools.diagrams package

	WrightTools.exceptions module

	WrightTools.kit module

	WrightTools.open

	WrightTools.units module

	Gallery

	Citing WrightTools
	Publications

	Alternatives

Index

	Index

	Module Index

	Search Page

Installation

WrightTools requires Python 3.6 or newer.

conda-forge

Conda [https://conda.io/docs/intro.html] is a multilingual package/environment manager.
It seamlessly handles non-Python library dependencies which many scientific Python tools rely upon.
Conda is recommended, especially for Windows users.
If you don’t have Python yet, start by installing Anaconda [https://www.continuum.io/downloads] or miniconda [https://conda.io/miniconda.html].

conda-forge [https://conda-forge.org/] is a community-driven conda channel. conda-forge contains a WrightTools feedstock [https://github.com/conda-forge/wrighttools-feedstock].

conda config --add channels conda-forge
conda install wrighttools

To upgrade:

conda update wrighttools

pip

pip [https://pypi.python.org/pypi/pip] is Python’s official package manager. WrightTools is hosted on PyPI [https://pypi.org/project/WrightTools/].

pip install wrighttools

To upgrade:

pip install wrighttools --upgrade

Quick Start

This “quick start” page is designed to introduce a few commonly-used features that you should know immediately as a user of WrightTools.
We assume that you have installed WrightTools and that you are somewhat comfortable using Python.
If you are brand new to Python, it’s typically useful to run Python within an integrated development environment—our favorite is Spyder [https://www.spyder-ide.org/].

Each of the following code blocks builds on top of the previous code.
Read this document like a series of commands typed into a Python shell.
We recommend following along on your own machine.

Create a Data Object

There are many ways to create a WrightTools data object.
One strategy is to open an existing wt5 file.
When you downloaded WrightTools you also downloaded a few example files.
The WrightTools.datasets package allows you to easily access the path to these files.
Let’s create a data object now:

import WrightTools as wt
get the path to an example wt5 file
from WrightTools import datasets
p = datasets.wt5.v1p0p1_MoS2_TrEE_movie # just a filepath
open data object
data = wt.open(p)

The data contains some helpful attributes.
We can “inspect” these attributes by simply entering them into a Python shell.
Let’s do that now:

>>> data.channel_names
['ai0', 'ai1', 'ai2', 'ai3', 'ai4', 'mc']
>>> data.axis_expressions
['w2', 'w1=wm', 'd2']
>>> data.shape
(41, 41, 23)

Alternatively, we can use the print_tree() method to print out a whole bunch of information at once.

>>> data.print_tree()
_001_dat (/tmp/811qwfvb.wt5)
├── axes
│ ├── 0: w2 (nm) (41, 1, 1)
│ ├── 1: w1=wm (nm) (1, 41, 1)
│ └── 2: d2 (fs) (1, 1, 23)
├── constants
├── variables
│ ├── 0: w2 (nm) (41, 1, 1)
│ ├── 1: w1 (nm) (1, 41, 1)
│ ├── 2: wm (nm) (1, 41, 1)
│ ├── 3: d2 (fs) (1, 1, 23)
│ ├── 4: w3 (nm) (1, 1, 1)
│ ├── 5: d0 (fs) (1, 1, 1)
│ └── 6: d1 (fs) (1, 1, 1)
└── channels
 ├── 0: ai0 (41, 41, 23)
 ├── 1: ai1 (41, 41, 23)
 ├── 2: ai2 (41, 41, 23)
 ├── 3: ai3 (41, 41, 23)
 ├── 4: ai4 (41, 41, 23)
 └── 5: mc (41, 41, 23)

Notice that the data object is made out of axes, constants, variables, and channels.
All of these are arrays, and they have different shapes and units associated with them.
For now, this is all you need to understand about the contents of data objects—read Data when you’re ready to learn more.
Next we’ll visualize our data.

Visualize Data

WrightTools strives to make data visualization as quick and painless as possible.

Axes, labels, and units are brought along implicitly.

WrightTools offers a few handy ways to quickly visualize a data object, shown below.
For more information, see Artists, or check out our Gallery.

quick1D

quick1D() makes it as easy as possible to visualize a simple 1D slice of our data object.
We have to specify an axis to plot along—for this example let’s choose w1=wm.
By default, quick1D() will plot all possible slices along our chosen axis.
Optionally, we can narrow down the number of generated plots by specifying what particular coordinate we are interested in.
In this example, we have fully specified all other axes using the at keyword argument, so only one plot will be generated.

wt.artists.quick1D(data, 'w1=wm', at={'w2': [2, 'eV'], 'd2': [-100, 'fs']})

(Source code, png, pdf)

[image: _images/quickstart-1.png]

quick2D

quick2D() is built with the same goals as quick1D(), but for two dimensional representations.
This time, we have to specify two axes to plot along—w1=wm and d2, in this example.
Again, we use the at keyword argument so only one plot will be generated.

wt.artists.quick2D(data, 'w1=wm', 'd2', at={'w2': [2, 'eV']})

(Source code, png, pdf)

[image: _images/quickstart-2.png]

interact2D

WrightTools.artists.interact2D() uses Matplotlib’s interactive widgets framework to present an interactive graphical interface to a multidimensional data object.
You must choose two axes to plot against in the central two-dimensional plot.
All other axes are automatically represented as “sliders”, and you can easily manipulate these two explore the dataset in its full dimensionality.
See Artists for an example.

Process Data

Now let’s actually modify the arrays that make up our data object. Note that the raw data which we imported is not being modified, rather we are modifying the data as copied into our data object.

Convert

WrightTools has built in units support.
This enables us to easily convert our data object from one unit system to another:

>>> data.units
('nm', 'nm', 'fs')
>>> data.convert('eV')
axis w2 converted from nm to eV
axis w1=wm converted from nm to eV
>>> data.units
('eV', 'eV', 'fs')

Note that only compatable axes were converted—the trailing axis with units 'fs' was ignored.
Want fine control?
You can always convert individual axes, e.g. data.w2.convert('wn').
For more information see Units.

Split

Use split() to break your dataset into smaller pieces.

>>> col = data.split('d2', -100.)
split data into 2 pieces along <d2>:
 0 : -inf to 0.00 fs (1, 1, 15)
 1 : 0.00 to inf fs (1, 1, 8)

Note that split() accepts axis expressions and unit-aware coordinates, not axis indices.

(Source code, png, pdf)

[image: _images/quickstart-3.png]

Clip

Use clip() to ignore/remove points of a channel outside of a specific range.

data.ai0.clip(min=0.0, max=0.1)

(Source code, png, pdf)

[image: _images/quickstart-4.png]

Transform

Use transform() to choose a different set of axes for your data object.

data.ai0.transform('w1=wm', 'w2-wm', 'd2')

(Source code, png, pdf)

[image: _images/quickstart-5.png]

Save Data

It’s easy to save your data objects using WrightTools.

Save, Open

Most simply, you can simply save…

data.save('my-path.wt5')

and then open…

data = wt.open('my-path.wt5')

You will pick right up at the state where you saved the object (even on different operating systems or machines)!

Collections

Collections are containers that can hold multiple data objects.
Collections can nest within each-other, much like folders in your computers file system.
Collections can help you store all associated data within a single wt5 file, keeping everything internally organized.
Creating collections is easy:

>>> collection = wt.Collection(name='test')

Filling collections with data objects is easy as well.
Again, let’s use the WrightTools.datasets package:

>>> from WrightTools import datasets
>>> p = datasets.COLORS.v0p2_d1_d2_diagonal
>>> wt.data.from_COLORS(p, parent=collection)
cols recognized as v0 (19)
data created at /tmp/w1ijzsmv.wt5::/d1_d2_diagonal_dat
 axes: ('d1', 'd2')
 shape: (21, 21)
>>> p = datasets.ocean_optics.tsunami
>>> wt.data.from_ocean_optics(p, parent=collection)
data created at /tmp/w1ijzsmv.wt5::/tsunami
 range: 339.95 to 1013.55 (nm)
 size: 2048
>>> p = datasets.PyCMDS.wm_w2_w1_000
>>> wt.data.from_PyCMDS(p, parent=collection)
data created at /tmp/w1ijzsmv.wt5::/3d1580hi
 axes: ('wm', 'w2', 'w1')
 shape: (35, 11, 11)

Note that we are using from functions instead of open().
That’s because these aren’t wt5 files—they’re raw data files output by various instruments.
We use the parent keyword argument to create these data objects directly inside of our collection.
See Data for a complete list of supported file formats.

Much like data objects, collection objects have a method print_tree() that prints out a bunch of information:

>>> collection.print_tree()
test (/tmp/w1ijzsmv.wt5)
├── 0: d1_d2_diagonal_dat (21, 21)
│ ├── axes: d1 (fs), d2 (fs)
│ ├── constants:
│ └── channels: ai0, ai1, ai2, ai3
├── 1: tsunami (2048,)
│ ├── axes: energy (nm)
│ ├── constants:
│ └── channels: signal
└── 2: 3d1580hi (35, 11, 11)
 ├── axes: wm (wn), w2 (wn), w1 (wn)
 ├── constants:
 └── channels: signal_diff, signal_mean, pyro1, pyro2, pyro3, PMT voltage

Collections can be saved inside of wt5 files, so be aware that open() may return a collection or a data object based on the contents of your wt5 file.

Learning More

We hope that this quick start page has been a useful introduction to you.
Now it’s time to go forth and process data!
If you want to read further, consider the following links:

	more about data objects: Data

	more about collection objects: Collection

	more about WrightTools artists: Artists

	a gallery of figures made using WrightTools (click for source code): Gallery

	a complete list of WrightTools units: Units

	a complete list of attributes and methods of the Data class: Data

Data

A data object contains your entire n-dimensional dataset, including axes, units, channels, and relevant metadata.
Once you have a data object, all of the other capabilities of WrightTools are immediately open to you, including processing, fitting, and plotting tools.

Here we highlight some key features of the data object.
For a complete list of methods and attributes, see WrightTools.data.Data in the API docs.

	Data
	Instantiation
	From Supported File Types

	From Bare Arrays

	Structure & Attributes
	Variable

	Axis

	Constant

	Channel

	Processing
	Units aware & interpolation ready

	Dimensionality without the cursing

	Processing without the pain

Instantiation

From Supported File Types

WrightTools aims to provide user-friendly ways of creating data directly from common spectroscopy file formats.
Here are the formats currently supported.

	name

	description

	API

	BrunoldrRaman

	Files from Brunold [http://brunold.chem.wisc.edu/] lab resonance raman measurements

	from_BrunoldrRaman()

	Cary

	Files from Varian’s Cary® Spectrometers

	from_Cary()

	COLORS

	Files from Control Lots Of Research in Spectroscopy

	from_COLORS()

	JASCO

	Files from JASCO [https://jascoinc.com/products/spectroscopy/] optical spectrometers

	from_JASCO()

	KENT

	Files from “ps control” by Kent Meyer

	from_KENT()

	Aramis

	Horiba [https://www.horiba.com/en_en/products/detail/action/show/Product/labspec-6-spectroscopy-suite-software-1843/] Aramis ngc binary files

	from_Aramis()

	Ocean Optics

	.scope files from ocean optics spectrometers

	from_ocean_optics()

	PyCMDS

	Files from PyCMDS [https://github.com/wright-group/PyCMDS]

	from_PyCMDS()

	Shimadzu

	Files from Shimadzu [http://www.ssi.shimadzu.com/products/productgroup.cfm?subcatlink=uvvisspectro] UV-VIS spectrophotometers

	from_shimadzu()

	SPCM

	Files from Becker & Hickl spcm [http://www.becker-hickl.com/software/spcm.htm] software

	from_spcm()

	Solis

	Files from Andor Solis software

	from_Solis()

	Tensor 27

	Files from Bruker Tensor 27 FT-IR

	from_Tensor27()

Is your favorite format missing?
It’s easy to add—promise! Check out Contributing.

These functions accept both local and remote (http/ftp) files as well as transparent compression (gz/bz2).
Compression detection is based on the file name, and file names for remote links are as appears in the link.
Many download links (such as those from osf.io or Google drive) do not include extensions in the download link,
and thus will cause Warnings/be unable to accept compressed files.
This can often be worked around by adding a variable to the end of the url such as https://osf.io/xxxxx/download?fname=file.csv.gz.
Google Drive direct download links have the form https://drive.google.com/dc?id=XXXXXXXXXXXXXXXXXXXX (i.e. replace open in the “share” links with dc).

From Bare Arrays

Got bare numpy arrays and dreaming of data?
It is possible to create data objects directly, as shown below.

import
import numpy as np
import WrightTools as wt
generate arrays for example
def my_resonance(xi, yi, intensity=1, FWHM=500, x0=7000):
 def single(arr, intensity=intensity, FWHM=FWHM, x0=x0):
 return intensity*(0.5*FWHM)**2/((xi-x0)**2+(0.5*FWHM)**2)
 return single(xi) * single(yi)
xi = np.linspace(6000, 8000, 75)[:, None]
yi = np.linspace(6000, 8000, 75)[None, :]
zi = my_resonance(xi, yi)
package into data object
data = wt.Data(name='example')
data.create_variable(name='w1', units='wn', values=xi)
data.create_variable(name='w2', units='wn', values=yi)
data.create_channel(name='signal', values=zi)
data.transform('w1', 'w2')

Note that NumPy has functions for reading data arrays from text files.
Our favorite is genfromtxt [https://docs.scipy.org/doc/numpy/reference/generated/numpy.genfromtxt.html].
Lean on these functions to read in data from unsuported file formats, then pass in the data as arrays.
Of course, if you find yourself processing a lot of data from a particular file format, consider contributing a new from function to WrightTools.

Having trouble connecting the WrightTools Data structure to bare numpy arrays?
We have a notebook that takes a look at how many common numpy.ndarray operations–
slicing, element-wise math, broadcasting, etc.–have analogues within the WrightTools data structure:
.. image:: https://mybinder.org/badge_logo.svg

	target

	https://mybinder.org/v2/gh/wright-group/WrightTools/master?filepath=examples%2Fwt%20for%20np%20users.ipynb

Structure & Attributes

So what is a data object anyway?
To put it simply, Data is a collection of WrightTools.data.Axis and WrightTools.data.Channel objects.
WrightTools.data.Axis objects are composed of WrightTools.data.Variable objects.

	attribute

	tuple of…

	axes

	Axis objects

	constants

	Constant objects

	channels

	Channel objects

	variables

	Variable objects

As mentioned above, the axes and channels within data can be accessed within the data.axes and data.channels lists.
Data also supports natural naming, so axis and channel objects can be accessed directly according to their name.
The natural syntax is recommended, as it tends to result in more readable code.

>>> data.axis_expressions
('w1', 'w2')
>>> data.w2 == data.axes[1]
True
>>> data.channel_names
('signal', 'pyro1', 'pyro2', 'pyro3')
>>> data.pyro2 == data.channels[2]
True

The order of axes and channels is arbitrary.
However many methods within WrightTools operate on the zero-indexed channel by default.
For this reason, you can bring your favorite channel to zero-index using bring_to_front().

Variable

The WrightTools.data.Variable class holds key coordinates of the data object.
One Variable instance exists for each recorded independent variable.
This includes scanned optomechanical hardware, but also still hardware, and other variables like lab time.
A typical data object will have many variables (each a multidimensional array).
Variables have the following key attributes:

	attribute

	description

	label

	LaTeX-formatted label, appropriate for plotting

	max()

	variable maximum

	min()

	variable minimum

	natural_name

	variable name

	units

	variable units

Axis

The WrightTools.data.Axis class defines the coordinates of a data object.
Each Axis contains an expression, which dictates its relationship with one or more variables.
Given 5 variables with names ['w1', 'w2', 'wm', 'd1', 'd2'] , example valid expressions include 'w1', 'w1=wm', 'w1+w2', '2*w1', 'd1-d2', and 'wm-w1+w2'.
Axes behave like arrays: you can slice into them, view their shape, get a min and max etc.
But actually axes do not contain any new array information: they simply refer to the Variable arrays.
Axes have the following key attributes:

	attribute

	description

	label()

	LaTeX-formatted label, appropriate for plotting

	min()

	coordinates minimum, in current units

	max()

	coordinates maximum, in current units

	natural_name

	axis name

	units

	current axis units (change with convert())

	variables

	component variables

	expression

	expression

Constant

WrightTools.data.Constant objects are a special subclass of Axis objects, which is expected to be a single value.
Constant adds the value to to the label attribute, suitable for titles of plots to identify
static values associated with the plot.
Note that there is nothing enforcing that the value is actually static: constants still have
shapes and can be indexed to get the underlying numpy array.

You can control how this label is generated using the attributes format_spec an round_spec.
label uses the python builtin format, an thus format_spec is a specification as in the
Format Specification Mini-Language [https://docs.python.org/3/library/string.html#formatspec].
Common examples would be “0.2f” or “0.3e” for decimal representation with two digits past the decimal
and engineers notation with 3 digits past the decimal, respectively.
round_spec allows you to control the rounding of your number via the builtin [https://docs.python.org/3/library/functions.html#round] round().
For instance, if you want a number rounded to the hundreds position, but represented as an integer, you may use round_spec=-2; format_spec="0.0f".

For example, if you have a constant with value 123.4567 nm, a format_spec of 0.3f, and a round_spec of 2, you will get a label something like '$\\mathsf{\\lambda_{1}\\,=\\,123.460\\,nm}$', which will render as \(\mathsf{\lambda_{1}\,=\,123.460\,nm}\).

An example of using constants/constant labels for plotting can be found in the gallery: Custom Figure.

In addition to the above attributes, constants add:

	attribute

	description

	format_spec

	Format specification for how to represent the value, as in format().

	round_spec

	Specify which digit to round to, as in round()

	label

	LaTeX formatted label which includes a symbol and the constant value.

	value

	The mean (ignoring NaNs) of the evaluated expression.

	std

	The standard deviation of the points used to compute the value.

Channel

The WrightTools.data.Channel class contains the n-dimensional signals.
A single data object may contain multiple channels corresponding to different detectors or measurement schemes.
Channels have the following key attributes:

	attribute

	description

	label

	LaTeX-formatted label, appropriate for plotting

	mag()

	channel magnitude (furthest deviation from null)

	max()

	channel maximum

	min()

	channel minimum

	name

	channel name

	null

	channel null (value of zero signal)

	signed

	flag to indicate if channel is signed

Processing

Units aware & interpolation ready

Experiments are taken over all kinds of dynamic range, with all kinds of units.
You might wish to take the difference between a UV-VIS scan taken from 400 to 800 nm, 1 nm steps and a different scan taken from 1.75 to 2.00 eV, 1 meV steps.
This can be a huge pain!
Even if you converted them to the same unit system, you would still have to deal with the different absolute positions of the two coordinate arrays.
map_variable() allows you to easily obtain a data object mapped onto a different set of coordinates.

WrightTools data objects know all about units, and they are able to use interpolation to map between different absolute coordinates.
Here we list some of the capabilities that are enabled by this behavior.

	method

	description

	gallery

	heal()

	use interpolation to guess the value of NaNs within a channel

	Heal

	join()

	join together multiple data objects, accounting for dimensionality and overlap

	Join

	map_variable()

	re-map data coordinates

	Map-Variable

Dimensionality without the cursing

Working with multidimensional data can be intimidating.
What axis am I looking at again?
Where am I in the other axis?
Is this slice unusual, or do they all look like that?

WrightTools tries to make multi-dimensional data easy to work with.
The following methods deal directly with dimensionality manipulation.

	method

	description

	gallery

	chop()

	chop data into a list of lower dimensional data

	

	collapse()

	destroy one dimension of data using a mathematical strategy

	

	moment()

	destroy one dimension of a channel by taking the nth moment

	

	split()

	split data at a series of coordinates, without reducing dimensionality

	Split

	transform()

	transform the data on to a new combination of variables as axes

	DOVE transform Fringes transform

WrightTools seamlessly handles dimensionality throughout.
Artists is one such place where dimensionality is addressed explicitly.

Processing without the pain

There are many common data processing operations in spectroscopy.
WrightTools endeavors to make these operations easy.
A selection of important methods follows.

	method

	description

	gallery

	clip()

	clip values outside of a given range (method of Channel)

	

	gradient()

	take the derivative along an axis

	Gradient

	join()

	join multiple data objects into one

	Join

	level()

	level the edge of data along a certain axis

	Level

	smooth()

	smooth a channel via convolution with a n-dimensional Kaiser window

	

Collection

Collection

Collection objects are containers, like folders in a file system.
They can contain any mixture of collections and data objects.
The contents of a collection can be accessed in a variety of convenient ways with WrightTools.
As an example, let’s create a simple wt5 file now.

import WrightTools as wt
results = wt.Collection(name='results')

We have created a new file with a root-level collection named results.
Let’s add some data to our collection.

results.create_data(name='neat')
results.create_data(name='messy')
results.create_data(name='confusing')

We can access/treat our collection like a dictionary with methods keys, values, and items.

>>> list(results.values())
[<WrightTools.Data 'neat'>, <WrightTools.Data 'messy'>, <WrightTools.Data 'confusing'>]

We can also access by key, or by index.
We can even use natural naming!

>>> results[1]
<WrightTools.Data 'messy'>
>>> results['neat']
<WrightTools.Data 'neat'>
>>> results.confusing
<WrightTools.Data 'confusing'>

Ever think to yourself “Jeez, it would be nice to also keep track of the calibration data from our experiment”?
Let’s add a child collection called calibration within our root results collection.
We’ll fill this collection with our calibration data.

calibration = results.create_collection(name='calibration')
calibration.create_data(name='OPA1_tune_test')
calibration.create_data(name='OPA2_tune_test')

This child collection can be accessed in all of the ways mentioned above (dictionary, index, natural naming).
The child collections and data objects hold a reference to the parent.

>>> calibration.parent
<WrightTools.Collection 'results'>

In summary, we have created a wt5 file with the following structure:

collection results
├─ data neat
├─ data messy
├─ data confusing
└─ collection calibration
 ├─ data OPA1_tune_test
 └─ data OPA2_tune_test

Collections can be nested and added to arbitrarily in order to optimally organize and share results.

Note that the collections do not directly contain datasets.
Datasets are children of the data objects.
We discussed data objects in the previous section.

Artists

The artists module contains a variety of data visualization tools.

	Artists
	Quick artists

	Interactive artists

	Colors

	Custom figures
	Layout

	Plot

	Beautify

	Save

Quick artists

To facilitate rapid and easy visualization of data, WrightTools offers
“quick” artist functions which quickly generate 1D or 2D
representations.
These functions are made to make good representations by default, but
they do have certain keyword arguments to make popular customization
easy.
These are particular useful functions within the context of
auto-generated plots in acquisition software.

WrightTools.artists.quick1D() is a function that generates 1D representations.

import WrightTools as wt
from WrightTools import datasets
import matplotlib.pyplot as plt
wt.artists.apply_rcparams('default')
import data
p = datasets.wt5.v1p0p0_perovskite_TA # axes w1=wm, w2, d2
data = wt.open(p)
data.transform("w1", "w2", "d2")
probe freqency trace
wt.artists.quick1D(data, axis=0, at={"w2": [1.7, "eV"], "d2": [0, "fs"]})
delay trace
wt.artists.quick1D(data, axis="d2", at={"w2": [1.7, "eV"], "w1": [1.65, "eV"]})
plt.show()

(Source code)

[image: _images/artists-1_00.png]
(png, pdf)

[image: _images/artists-1_01.png]
(png, pdf)

WrightTools.artists.quick2D() is a function that generates 2D representations.

import WrightTools as wt
from WrightTools import datasets
import matplotlib.pyplot as plt
wt.artists.apply_rcparams('default')
import data
p = datasets.wt5.v1p0p0_perovskite_TA # axes w1=wm, w2, d2
data = wt.open(p)
data.transform("w1", "w2", "d2")
probe wigner
wt.artists.quick2D(data, xaxis=0, yaxis=2, at={"w2": [1.7, "eV"]})
2D-frequency
wt.artists.quick2D(data, xaxis="w1", yaxis="w2", at={"d2": [0, "fs"]})
plt.show()

(Source code)

[image: _images/artists-2_00.png]
(png, pdf)

[image: _images/artists-2_01.png]
(png, pdf)

Note that the actual quick functions are each one-liners. Keyword
arguments such as autosave and save_directory may be supplied if
the user desires to save images (not typical for users in interactive
mode). The channel kwarg allows users to specify what channel they
would like to plot.

Perhaps the most powerful feature of WrightTools.artists.quick1D()
and WrightTools.artists.quick2D() are
their ability to treat higher-dimensional datasets by automatically
generating multiple figures. When handing a dataset of higher
dimensionality to these artists, the user may choose which axes will
be plotted against using keyword arguments.
Any axis not plotted against will be iterated over such that an image
will be generated at each coordinate in that axis. Users may also
provide a dictionary with entries of the form
{axis_name: [position, units]} to choose a specific coordinates
along non-plotted axes. Positions along non-plotted axes are reported
in the title of each plot and overlines are shown when applicable.
These functionalities are derived from WrightTools.data.Data.chop().

Interactive artists

WrightTools.artists.interact2D() allows users to easily vizualize 2D slices of arbitrarily
high dimension data.

import WrightTools as wt
from WrightTools import datasets
import matplotlib.pyplot as plt
import data
p = datasets.wt5.v1p0p0_perovskite_TA # axes w1=wm, w2, d2
data = wt.open(p)
interact = wt.artists.interact2D(data, xaxis=0, yaxis=2, local=True, verbose=False)
show-off functionality. The following lines are not needed when in an interactive mode.
interact[1]['w2'].set_val(40) # hack w2 slider
fig = plt.gcf()
simulate mouse event to get crosshairs
fig.canvas.button_release_event(160, 375, 1)
plt.show()

(Source code, png, pdf)

[image: _images/artists-3.png]

Side plots show x and y projections of the slice (shaded gray). For signed channels, side plots will also show projections of the negatively signed components and positively signed components. Left
clicks on the main axes draw 1D slices on side plots at the coordinates
selected. Right clicks remove the 1D slices. For 3+ dimensional data,
sliders below the main axes are used to change which slice is viewed.
interact2D also supports keyboard navigation

	key

	action

	tab / ctrl+tab

	cycle focus between the sliders and the plot

	left/right arrow

	decrement/increment slice (slider focus) or change y slice (plot focus)

	up/down arrow

	change x slice (plot focus)

Note that the left/right arrow navigation overrides the built-in undo/redo action of the qt viewer.
Users can still undo/redo with the ‘c/v’ key presses, or through the GUI toolbar above the figure.

Colors

Two-dimensional data is often represented using “heatmaps”.
Your choice of colormap is a crucial part of how your data is perceived.
WrightTools has a few choice colormaps built-in.

(Source code, png, pdf)

[image: _images/artists-4.png]

All of these are held in the colormaps dictionary.

>>> wt.artists.colormaps['default']
<matplotlib.colors.LinearSegmentedColormap at 0x7f6d8b658d30>

Throughout WrightTools you can refer to colormaps by their name.
By default, WrightTools will use the “default” colormap when plotting unsigned channels and the “signed” colormap when plotting signed channels.

There are many great resources on how to choose the best colormap.
Choosing Colormaps [https://matplotlib.org/users/colormaps.html#choosing-colormaps] is a great place to start reading.
WrightTools tries to use perceptual colormaps wherever possible.
When a large dynamic range is needed, the data can always be scaled to accommodate.

The default colormap is based on the wonderful cubehelix color scheme. 1
The cubehelix parameters have been fine-tuned to roughly mimic the colors of the historically popular “jet” colormap.

The isoluminant series are instances of the color scheme proposed by Kindlmann et al. 2

The skyebar series were designed by Schuyler (Skye) Kain for use in his instrumental software package COLORS.

wright and signed_old are kept for legacy purposes.

Custom figures

WrightTools offers specialized tools for custom publication quality figures.
As an example, we will break down the figure in Custom Figure,
exploring the relationships between WrightTools and the underlying matplotlib.

The preprocessing of data is handled in tools covered in Data.

First, the full code and the image it creates:

import matplotlib.pyplot as plt

import numpy as np

import WrightTools as wt
from WrightTools import datasets

obtain and process data
p = datasets.wt5.v1p0p1_MoS2_TrEE_movie
data = wt.open(p)
data.level(0, 2, -3)
data.convert("eV", convert_variables=True, verbose=False)
data.smooth([2, 2, 2])
data.ai0.symmetric_root(2)
data.ai0.normalize()
data.ai0.clip(min=0, replace="value")
chop out data of interest
d2_vals = [-50, -500]
w2_vals = [1.7, 1.8, 1.9, 2.0]
wigners = [data.chop("w1=wm", "d2", at={"w2": [w2, "eV"]})[0] for w2 in w2_vals]
traces1 = [
 data.chop("w1=wm", at={"w2": [w2, "eV"], "d2": [d2_vals[0], "fs"]})[0] for w2 in w2_vals
]
traces2 = [
 data.chop("w1=wm", at={"w2": [w2, "eV"], "d2": [d2_vals[1], "fs"]})[0] for w2 in w2_vals
]
tracess = [traces1, traces2]
prepare spine colors
wigner_colors = ["C0", "C1", "C2", "C3"]
trace_colors = ["#FE4EDA", "#00B7EB"]
prepare figure gridspec
cols = [1, 1, "cbar"]
aspects = [[[0, 0], 0.3]]
fig, gs = wt.artists.create_figure(
 width="double", cols=cols, nrows=3, aspects=aspects, wspace=0.35, hspace=0.35
)
plot wigners
indxs = [(row, col) for row in range(1, 3) for col in range(2)]
for indx, wigner, color in zip(indxs, wigners, wigner_colors):
 ax = plt.subplot(gs[indx])
 ax.pcolor(wigner, vmin=0, vmax=1) # global colormpa
 ax.contour(wigner) # local contours
 ax.grid()
 wt.artists.set_ax_spines(ax=ax, c=color)
 # set title as value of w2
 wigner.constants[0].format_spec = ".2f"
 wigner.round_spec = -1
 wt.artists.corner_text(wigner.constants[0].label, ax=ax)
 # plot overlines
 for d2, t_color in zip(d2_vals, trace_colors):
 ax.axhline(d2, color=t_color, alpha=0.5, linewidth=6)
 # plot w2 placement
 ax.axvline(wigner.w2.points, color="grey", alpha=0.75, linewidth=6)
plot traces
indxs = [(0, col) for col in range(2)]
for indx, color, traces in zip(indxs, trace_colors, tracess):
 ax = plt.subplot(gs[indx])
 for trace, w_color in zip(traces, wigner_colors):
 ax.plot(trace, color=w_color, linewidth=1.5)
 ax.grid()
 ax.set_xlim(trace.axes[0].min(), trace.axes[0].max())
 wt.artists.set_ax_spines(ax=ax, c=color)
plot colormap
cax = plt.subplot(gs[1:3, -1])
ticks = np.linspace(data.ai0.min(), data.ai0.max(), 11)
wt.artists.plot_colorbar(cax=cax, label="amplitude", cmap="default", ticks=ticks)
set axis labels
wt.artists.set_fig_labels(xlabel=data.w1__e__wm.label, ylabel=data.d2.label, col=slice(0, 1))
ylabel of zeroth row
ax = plt.subplot(gs[0, 0])
ax.set_ylabel("amplitude")
saving the figure as a png
wt.artists.savefig("custom_fig.png", fig=fig, close=False)

[image: _images/sphx_glr_custom_fig_001.png]

Layout

WrightTools defines a handy function, create_figure(), for easily and flexibly making complicated figures.
When made with this function, Axes created have additional functionality built in to work with Data objects directly.

create_figure() makes it easy to create figures the perfect size for "single" or double" column figures for journal articles (though they are convenient in other contexts as well).

create_figure() also creates a GridSpec to help layout subplots.
Columns are created with a weighted list with the number of columns, passed as cols.
A special weight, "cbar", provides a fixed width column intended for color bars.
All other columns are proportionally distributed according to their weights.
The number of rows in the grid are specified with the nrows kwarg.
You can modify the aspect ratio of particular rows independently using the aspects and default_aspect kwargs.

Spacing between figures can be adjusted with the wspace and hspace kwargs for the width and height, respectively.

Axes can be accessed with matplotlib.pyplot.subplot().
Importantly, axes may span multiple rows/columns by using slice syntax into the gridspec.
This is demonstrated with the color bar axes here, which takes up two rows in the last column.

prepare figure gridspec
cols = [1, 1, "cbar"]
aspects = [[[0, 0], .3]]
fig, gs = wt.artists.create_figure(
 width="double", cols=cols, nrows=3, aspects=aspects, wspace=1.35, hspace=.35
)
plot wigners
indxs = [(row, col) for row in range(1, 3) for col in range(2)]
for indx, wigner, color in zip(indxs, wigners, wigner_colors):
 ax = plt.subplot(gs[indx])
...
indxs = [(0, col) for col in range(2)]
for indx, color, traces in zip(indxs, trace_colors, tracess):
 ax = plt.subplot(gs[indx])
...
cax = plt.subplot(gs[1:3, -1])

Plot

Once you have axes with the subplot() call, it can be used as you are used to using matplotlib.axes.Axes [https://matplotlib.org/api/axes_api.html#matplotlib.axes.Axes] objects (though some defaults, such as colormap, differ from bare matplotlib).
However, you can also pass WrightTools.data.Data objects in directly (and there are some kwargs available when you do).
These WrightTools.artists.Axes will extract out the proper arrays and plot the data.

for indx, wigner, color in zip(indxs, wigners, wigner_colors):
 ax = plt.subplot(gs[indx])
 ax.pcolor(wigner, vmin=0, vmax=1) # global colormpa
 ax.contour(wigner) # local contours
...
for indx, color, traces in zip(indxs, trace_colors, tracess):
 ax = plt.subplot(gs[indx])
 for trace, w_color in zip(traces, wigner_colors):
 ax.plot(trace, color=w_color, linewidth=1.5)

Beautify

Once the main data is plotted, additional information can be overlaid on the axes.
Of course, standard matplotlib methods like axhline() [https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.axhline.html#matplotlib.axes.Axes.axhline] or set_xlim() [https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.set_xlim.html#matplotlib.axes.Axes.set_xlim] are all available.
In addition, WrightTools defines some small helper functions for common tasks.

	set_ax_spines() Easily set color/width of the outline (spines) of an axis

	Great for using color to connect different parts of a figure (or figures throughout a larger work)

	corner_text() Quick and easy plot labeling within a dense grid

	Pairs well with WrightTools.data.Constant.label

	plot_colorbar() Add a colorbar in a single function call

	set_fig_labels() Label axes in a whole row/column of a figure

	Allows the use of slice objects to limit range affected

	Removes axis labels from other axes in the rectangle

	Pairs well with WrightTools.data.Axes.label

wigner_colors = ["C0", "C1", "C2", "C3"]
trace_colors = ["#FE4EDA", "#00B7EB"]
...
for indx, wigner, color in zip(indxs, wigners, wigner_colors):
 ...
 ax.grid()
 wt.artists.set_ax_spines(ax=ax, c=color)
 # set title as value of w2
 wigner.constants[0].format_spec = ".2f"
 wigner.round_spec = -1
 wt.artists.corner_text(wigner.constants[0].label, ax=ax)
 # plot overlines
 for d2, t_color in zip(d2_vals, trace_colors):
 ax.axhline(d2, color=t_color, alpha=.5, linewidth=6)
 # plot w2 placement
 ax.axvline(wigner.w2.points, color="grey", alpha=.75, linewidth=6)
...
for indx, color, traces in zip(indxs, trace_colors, tracess):
 ...
 ax.set_xlim(trace.axes[0].min(), trace.axes[0].max())
 wt.artists.set_ax_spines(ax=ax, c=color)
plot colormap
cax = plt.subplot(gs[1:3, -1])
ticks = np.linspace(data.ai0.min(), data.ai0.max(), 11)
wt.artists.plot_colorbar(cax=cax, label="amplitude", cmap="default", ticks=ticks)
set axis labels
wt.artists.set_fig_labels(xlabel=data.w1__e__wm.label, ylabel=data.d2.label, col=slice(0, 1))

Save

Saving figures is as easy as calling savefig().
This is a simple wrapper for matplotlib.pyplot.savefig() which allows us to override defaults so that figures created with create_figure() have proper margins and resolution.
If you wish to change margin padding or transparancy settings, the matplotlib function will work just as well.

saving the figure as a png
wt.artists.savefig("custom_fig.png", fig=fig, close=False)

	1

	A colour scheme for the display of astronomical intensity images
Dave Green
Bulletin of the Astronomical Society of India 2011
arXiv:1108.5083 [https://arxiv.org/abs/1108.5083]

	2

	Face-based luminace matching for perceptual colormap generation
G. Kindlmann, E. Reinhard, and S Creem
IEEE Visualization 2002
doi:10.1109/visual.2002.1183788 [http://dx.doi.org/10.1109/visual.2002.1183788]

Units

WrightTools provides its own units system.
You can use it directly, if you wish.

>>> import WrightTools as wt
>>> wt.units.converter(2., 'eV', 'nm')
620.0

This same units system enables the units-aware properties throughout WrightTools.

In WrightTools, units are organized into kinds.
It is always possible to convert between units of the same kind, and never possible to convert between kinds.

The units system also provides a symbol for each unit, enabling easy plotting.

The following table contains every unit in WrightTools.

	name

	description

	kind

	symbol

	rad

	radian

	angle

	None

	deg

	degrees

	angle

	None

	fs

	femtoseconds

	delay

	\(\tau\)

	ps

	picoseconds

	delay

	\(\tau\)

	ns

	nanoseconds

	delay

	\(\tau\)

	mm_delay

	mm

	delay

	\(\tau\)

	nm

	nanometers

	energy

	\(\lambda\)

	wn

	wavenumbers

	energy

	\(\bar{\nu}\)

	eV

	electronvolts

	energy

	\(\hslash\omega\)

	meV

	millielectronvolts

	energy

	\(E\)

	Hz

	hertz

	energy

	\(f\)

	THz

	terahertz

	energy

	\(f\)

	GHz

	gigahertz

	energy

	\(f\)

	K

	kelvin

	temperature

	\(T\)

	deg_C

	celsius

	temperature

	\(T\)

	deg_F

	fahrenheit

	temperature

	\(T\)

	deg_R

	rankine

	temperature

	\(T\)

	fluence

	uJ per sq. cm

	intensity

	\(\mathcal{F}\)

	mOD

	mOD

	optical density

	None

	OD

	OD

	optical density

	None

	nm_p

	nanometers

	position

	None

	um

	microns

	position

	None

	mm

	millimeters

	position

	None

	cm

	centimeters

	position

	None

	in

	inches

	position

	None

	FWHM

	full width half max

	pulse width

	\(\sigma\)

	fs_t

	femtoseconds

	time

	None

	ps_t

	picoseconds

	time

	None

	ns_t

	nanoseconds

	time

	None

	us_t

	microseconds

	time

	None

	ms_t

	milliseconds

	time

	None

	s_t

	seconds

	time

	None

	m_t

	minutes

	time

	None

	h_t

	hours

	time

	None

	d_t

	days

	time

	None

Datasets

A few example datasets are distributed within WrightTools.
These make it easy to demonstrate and test data processing features.
They’re also a lot of fun!

The following table contains every dataset distributed within WrightTools.

	dataset

	axis expressions

	shape

	gallery links

	BrunoldrRaman.LDS821_514nm_80mW

	('energy',)

	(1340,)

	Resonance Raman

	Cary.CuPCtS_H2O_vis (collection)

	('wavelength',)

	(141,)

	

	Cary.filters (collection)

	('wavelength',)

	multiple

	Plotting Multiple Lines

	COLORS.v0p2_d1_d2_diagonal 3

	('d1', 'd2')

	(21, 21)

	Fill types

	COLORS.v2p2_WL_wigner

	('wm', 'd1')

	(241, 51)

	

	JASCO.PbSe_batch_1 6

	('energy',)

	(1801,)

	

	JASCO.PbSe_batch_4_2012_02_21 3

	('energy',)

	(1251,)

	

	JASCO.PbSe_batch_4_2012_03_15 3

	('energy',)

	(1251,)

	

	KENT.LDS821_DOVE 5

	('w2', 'w1')

	(60, 60)

	DOVE transform

	KENT.LDS821_TRSF 1

	('w2', 'w1')

	(71, 71)

	Quick 2D, Quick 1D

	KENT.PbSe_2D_delay_B 6

	('d2', 'd1')

	(101, 101)

	

	ocean_optics.tsunami

	('energy',)

	(2048,)

	

	PyCMDS.d1_d2_000

	('d1', 'd2')

	(101, 101)

	Label delay space

	PyCMDS.d1_d2_001

	('d1', 'd2')

	(101, 101)

	Label delay space

	PyCMDS.w1_000

	('w1',)

	(51,)

	

	PyCMDS.w1_wa_000

	('w1=wm', 'wa')

	(25, 256)

	Tune test

	PyCMDS.w2_w1_000 4

	('w2', 'w1')

	(81, 81)

	Fringes transform

	PyCMDS.wm_w2_w1_000

	('wm', 'w2', 'w1')

	(35, 11, 11)

	

	PyCMDS.wm_w2_w1_001

	('wm', 'w2', 'w1')

	(29, 11, 11)

	

	Shimadzu.MoS2_fromCzech2015 2

	('energy',)

	(819,)

	

	Solis.wm_ypos_fluorescence_with_filter

	('wm', 'ypos')

	(2560, 2160)

	

	Solis.xpos_ypos_fluorescence

	('xpos', 'ypos')

	(2560, 2160)

	

	spcm.test_data

	('time',)

	(1024,)

	

	spcm.test_data_full_metadata

	('time',)

	(1024,)

	

	Tensor27.CuPCtS_powder_ATR

	('energy',)

	(7259,)

	

	wt5.v1p0p0_perovskite_TA

	('w1=wm', 'w2', 'd2')

	(52, 52, 13)

	Quick 2D Signed

	wt5.v1p0p1_MoS2_TrEE_movie 2

	('w2', 'w1', 'd2')

	(41, 41, 23)

	Level, Colormaps

	1

	Triply Resonant Sum Frequency Spectroscopy: Combining Advantages of Resonance Raman and 2D-IR
Erin S. Boyle, Nathan A. Neff-Mallon, and John C. Wright
The Journal of Physical Chemistry A 2013 117 (47), 12401-12408
doi:10.1021/jp409377a [http://dx.doi.org/10.1021/jp409377a]

	2(1,2)

	Measurement of Ultrafast Excitonic Dynamics of Few-Layer MoS2 Using State-Selective Coherent Multidimensional Spectroscopy
Kyle J. Czech, Blaise J. Thompson, Schuyler Kain, Qi Ding, Melinda J. Shearer, Robert J. Hamers, Song Jin, and John C. Wright
ACS Nano 2015 9 (12), 12146-12157
doi:10.1021/acsnano.5b05198 [http://dx.doi.org/10.1021/acsnano.5b05198]

	3(1,2,3)

	Ultrafast Dynamics within the 1S Exciton Band of Colloidal PbSe Quantum Dots Using Multiresonant Coherent Multidimensional Spectroscopy
Daniel D. Kohler, Stephen B. Block, Schuyler Kain, Andrei V. Pakoulev, and John C. Wright
The Journal of Physical Chemistry C 2014 118 (9), 5020-5031
doi:10.1021/jp412058u [http://dx.doi.org/10.1021/jp412058u]

	4

	Group and phase velocity mismatch fringes in triple sum-frequency spectroscopy
Darien J. Morrow, Daniel D. Kohler, and John C. Wright
Physical Review A 2017 96, 063835
doi:10.1103/PhysRevA.96.063835 [http://dx.doi.org/10.1103/PhysRevA.96.063835]

	5

	Multidimensional Spectral Fingerprints of a New Family of Coherent Analytical Spectroscopies
Nathan A. Neff-Mallon and John C. Wright
Analytical Chemistry 2017 89 (24), 13182–13189
doi:10.1021/acs.analchem.7b02917 [http://dx.doi.org/10.1021/acs.analchem.7b02917]

	6(1,2)

	Multiresonant Coherent Multidimensional Electronic Spectroscopy of Colloidal PbSe Quantum Dots
Lena A. Yurs, Stephen B. Block, Andrei V. Pakoulev, Rachel S. Selinsky, Song Jin, and John Wright
The Journal of Physical Chemistry C 2011 115 (46), 22833-22844
doi:10.1021/jp207273x [http://dx.doi.org/10.1021/jp207273x]

Contributing

Thank you so much for contributing to WrightTools!
We really appreciate your help.

If you have any questions at all, please either open an issue on GitHub [https://github.com/wright-group/WrightTools/issues] or email a WrightTools maintainer. The current maintainers can always be found in CONTRIBUTORS [https://github.com/wright-group/WrightTools/blob/master/CONTRIBUTORS].

Are you interested in adding support for yet another data format?
Please see Writing a New From Function.

Preparing

	fork the WrightTools repository [https://github.com/wright-group/WrightTools] (if you have push access to the main repository you can skip this step)

	clone WrightTools to your machine:

$ git clone <your fork>

	in the cloned directory (note, to install to system python, you may need to use sudo for this command):

$ pip install -e .[dev]

	run tests

$ pytest

Note: On *nix machines (unfortunately this does not work on Windows),
the tests may be multiprocessed using pytest-mp [https://github.com/ansible/pytest-mp]:

$ pip install pytest-mp
$ pytest --mp

Contributing

	
	ensure that the changes you intend to make have corresponding issues on GitHub [https://github.com/wright-group/WrightTools/issues]
	
	if you aren’t sure how to break your ideas into atomic issues, feel free to open a discussion issue

	looking for low-hanging fruit? check out the help wanted label [https://github.com/wright-group/WrightTools/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22] for beginner-friendly issues

$ # Create the branch, including remote
$ git branch <your branch> --set-upstream-to origin origin/<your branch>
$ git checkout <your branch> # Switch to the newly created branch

	run all tests to ensure that nothing is broken right off the start

$ pytest

	make your changes, commiting often

$ git status # See which files you have changed/added
$ git diff # See changes since your last commit
$ git add <files you wish to commit>
$ git commit -m "Description of changes" -m "More detail if needed"

	mark your issues as resolved (within your commit message):

$ git commit -m "added crazy colormap (resolves #99)"

	If your commit is related to an issue, but does not resolve it, use addresses #99 in the commit message

	if appropriate, add tests that address your changes (if you just fixed a bug, it is strongly reccomended that you add a test so that the bug cannot come back unanounced)

	once you are done with your changes, run your code through flake8 and pydocstyle

$ flake8 file.py
$ pydocstyle file.py

	rerun tests

	add yourself to CONTRIBUTORS [https://github.com/wright-group/WrightTools/blob/master/CONTRIBUTORS]

	push your changes to the remote branch (github)

$ git pull # make sure your branch is up to date
$ git push

	make a pull request to the master branch

	communicate with the maintainers in your pull request, assuming any further work needs to be done

	celebrate! 🎉

Style

	Internally we use the following abbreviations:
	
	WrightTools
	import WrightTools as wt

	Matplotlib
	import matplotlib as mpl

	Pyplot
	from matplotlib import pyplot as plt

	NumPy
	import numpy as np

WrightTools follows pep8 [https://www.python.org/dev/peps/pep-0008/], with the following modifications:

	Maximum line length from 79 characters to 99 characters.

WrightTools also folows numpy Docstring Convention [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt], which is a set of adjustments to pep257 [https://www.python.org/dev/peps/pep-0257/].
WrightTools additionally ignores one guideline:

	WrightTools does not require all magic methods (e.g. __add__) to have a docstring.

	It remains encourged to add a docstring if there is any ambiguity of the meaning.

We use flake8 [http://flake8.pycqa.org/en/latest/] for automated code style enforcement, and pydocstyle [http://www.pydocstyle.org] for automated docstring style checking.

$ # These will check the whole directory (recursively)
$ flake8
$ pydocstyle

Consider using black [https://pypi.org/project/black/] for automated code corrections.
Black is an opinionated code formatter for unambiguous standardization.

$ git commit -m "Describe changes"
$ black file.py
$ git diff # review changes
$ git add file.py
$ git commit -m "black style fixes"

We also provide a configuration to use git hooks to automatically apply black style to edited files.
This hook can be installed using pre-commit:

$ pre-commit install

When committing, it will automatically apply the style, and prevent the commit from completing if changes are made.
If that is the case, simply re-add the changed files and then commit again.
This prevents noisy commit logs with changes that are purely style conformity.

The wt5 File Format

WrightTools stores data in binary wt5 files.

wt5 is a sub-format of HDF5 [https://support.hdfgroup.org/HDF5/].

wt5

wt5 files are hdf5 files with particular structure and attributes defined.
wt5 objects may appear embedded within a larger hdf5 file or vise-versa, however this is untested.
At the root of a wt5 file, a Collection or Data object is found.
Collection and Data are hdf5 groups.
A Collection may have children consisting of Collection and/or Data.
A Data may have children consisting of Variable and/or Channel.
Variable and Channel are hdf5 datasets.

Metadata

The following metadata is handled within WrightTools and define the necessary attributes to be a wt5 file.
It is recommended not to write over these attributes manually except at import time (e.g. from_<x> function).

	name

	Collection

	Data

	Variable

	Channel

	description/notes

	name

	yes

	yes

	yes

	yes

	Usually matches the last component of the path,
except for root, /, which does not have a path with it’s name

	class

	yes

	yes

	yes

	yes

	Identifies which kind of WrightTools object it is.

	created

	yes

	yes

	
	
	Timestamp of when the object was made,
can be overwritten with source file creation time by from_<x> functions.

	__version__

	yes

	yes

	
	
	wt5 version identifier

	item_names

	yes

	yes

	
	
	Ordered list of the children

	variable_names

	
	yes

	
	
	Ordered list of all Variables

	channel_names

	
	yes

	
	
	Ordered list of all Channels

	axes

	
	yes

	
	
	Ordered list of axes expressions which define how a Data object is represented

	constants

	
	yes

	
	
	Ordered list of expressions for values which are constant

	kind

	
	yes

	
	
	Short description of what type of file it originated
from, usually the instrument

	source

	
	yes

	
	
	File path/url to the original file as read in

	label

	
	
	yes

	yes

	Identifier used to create more complex labels in
Axes or Constants, which are used to plot

	units

	
	
	yes

	yes

	Units assigned to the dataset

	min

	
	
	yes

	yes

	Cached minimum value

	max

	
	
	yes

	yes

	Cached maximum value

	argmin

	
	
	yes

	yes

	Cached index of minimum value

	argmax

	
	
	yes

	yes

	Cached index of maximum value

	signed

	
	
	
	yes

	Boolean for treating channel as signed/unsigned

HDF5

The HDF5 data model contains two primary objects: the group and the dataset.
Groups are used to hierarchically organize content within the file.
Each group is a container for datasets and other groups.
Think of groups like folders in your computers file system.
Every HDF5 file contains a top-level root group, signified by /.

Datasets are specialty containers for raw data values.
Think of datasets like multidimensional arrays, similar to the numpy ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html].
Each dataset has a specific data type, such as integer, float, or character.

Groups and datasets can contain additional metadata [https://en.wikipedia.org/wiki/Metadata].
This metadata is stored in a key: value pair system called attrs, similar to a python dictionary.

Much more information can be found on the HDF5 tutorial [https://support.hdfgroup.org/HDF5/Tutor/].

WrightTools relies upon the h5py package [http://www.h5py.org/], a Pythonic interface to HDF5.

Access

wt5 is a binary format, so it cannot be interpreted with traditional text editors.
Since wt5 is a sub-format of HDF5, WrightTools benefits from the ecosystem of HDF5 tools that already exists.
This means that it is possible to import and interact with wt5 files without WrightTools, or even without python.

ASCII

Export an HDF5 file to a human-readable ASCII file using h5dump [https://support.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Dump].

See also HDF to Excel [https://support.hdfgroup.org/HDF5/HDF5-FAQ.html#toexcel].

Fortran

Use the official HDF5 Fortran Library [https://support.hdfgroup.org/HDF5/doc/fortran/index.html].

Graphical

HDF COMPASS [https://support.hdfgroup.org/projects/compass/index.html], a simple tool for navigating and viewing data within HDF5 files (no editing functionality).

HDF VIEW [https://support.hdfgroup.org/products/java/hdfview/index.html], a visual tool for browsing and editing HDF5 files.

MATLAB

MATLAB offers built-in high-level HDF5 functions [https://www.mathworks.com/help/matlab/high-level-functions.html] including h5disp, h5read, and h5readatt.

Python (without WrightTools)

We reccomend the amazing h5py package [http://www.h5py.org/].

Shell

h5cli [https://gitlab.com/h5cli/h5cli]: bash-like interface to interacting with HDF5 files.

h5diff [https://support.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Diff]: compare two HDF5 files, reporting the differences.

h5ls [https://support.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Ls]: print information about one or more HDF5 files.

Complete list of official HDF5 tools [https://support.hdfgroup.org/HDF5/doc/RM/Tools.html]

Changes

Version 1.0.0

Initial release of the format.

Version 1.0.1

Changes internal handling of strings. Bare strings are no longer required to call encode() before storing.

Version 1.0.2

Adds “constants” as a stored attribute in the attrs dictionary, a list of strings just like axes.

Version 1.0.3

Changed identity as stored in attrs dictionary (axis and constant) to use the expression including operators.
Previous versions exhibited a bug where decimal points would be ignored when the expression was generated from the attrs (thus “2.0” would be stored as “2_0” and read in as “20”).

Citing WrightTools

When publishing research which used WrightTools, please provide credit to WrightTools
developers through citation or acknowledgement.

[image: _images/status.svg]
 [https://doi.org/10.21105/joss.01141]BibTex citation:

@article{Thompson2019,
 doi = {10.21105/joss.01141},
 url = {https://doi.org/10.21105/joss.01141},
 year = {2019},
 month = {jan},
 publisher = {The Open Journal},
 volume = {4},
 number = {33},
 pages = {1141},
 author = {Blaise Thompson and Kyle Sunden and Darien Morrow and Daniel Kohler and John Wright},
 title = {{WrightTools}: a Python package for multidimensional spectroscopy},
 journal = {Journal of Open Source Software}
}

Also see WrightTools.__citation__.

In addition to the main WrightTools citation, each released version of WrightTools has its own
DOI through zenodo. Refer there to cite a particular version: https://zenodo.org/record/1198904.

Publications

The following publications were enabled, to some extent, by WrightTools.
The authors of these publications have volunteered to appear on this page.

Would you like your publication to appear here?
Email a developer—or better yet, make a pull request.

Ordered by date of publication, newest first.

	Three Dimensional Triply Resonant Sum Frequency Spectroscopy Revealing Vibronic Coupling in Cobalamins: Toward a Probe of Reaction Coordinates
J. Phys. Chem. A 2018 122 (46), 9031–9042
doi:10.1021/acs.jpca.8b07678 [https://doi.org/10.1021/acs.jpca.8b07678]

	Communication: Multidimensional triple sum-frequency spectroscopy of MoS2 and comparisons with absorption and second harmonic generation spectroscopies
J. Chem. Phys 2018 149, 091101.
doi:10.1063/1.5047802 [https://doi.org/10.1063/1.5047802]

	Interference and phase mismatch effects in coherent triple sum frequency spectroscopy
Chemical Physics 2018 512, 13–19
doi:10.1016/j.chemphys.2018.05.023 [https://10.1016/j.chemphys.2018.05.023]

	Resonant Third-Order Susceptibility of PbSe Quantum Dots Determined by Standard Dilution and Transient Grating Spectroscopy
J. Phys. Chem. C 2018 122 (31), 18086–18093.
doi:10.1021/acs.jpcc.8b04462 [https://doi.org/10.1021/acs.jpcc.8b04462]

	Group- and phase-velocity mismatch fringes in triple sum-frequency spectroscopy
Phys. Rev. A 2017 96 (6).
doi:10.1103/PhysRevA.96.063835 [https://doi.org/10.1103/PhysRevA.96.063835]

	Multidimensional Spectral Fingerprints of a New Family of Coherent Analytical Spectroscopies
Anal. Chem. 2017 89, 24, 13182–12189.
doi:10.1021/acs.analchem.7b02917 [https://doi.org/10.1021/acs.analchem.7b02917]

	Frequency-domain coherent multidimensional spectroscopy when dephasing rivals pulsewidth:
Disentangling material and instrument response
J. Chem. Phys 2017 147, 084202.
doi:10.1063/1.4986069 [https://doi.org/10.1063/1.4986069]

Alternatives

There are several packages with similar goals as WrightTools.
None of them replace everything WrightTools does, but each of them overlaps with one of WrightTools’ main features:

	focus on spectroscopy

	multidimensional

	self-describing data formats

	openly licensed & freely available

Some of these packages are focused on adjacent analytical techniques that have different conventions than multidimensional spectroscopy.
Others are focused on spectroscopy, but with a different approach than WrightTools.
Others are more generic, and don’t have the conventions of any particular experimental strategy built in.
All of them are really cool!
Your project may be better served by one of them:

	glue [http://www.glueviz.org]

	gridded [https://noaa-orr-erd.github.io/gridded/]

	Gwyddion [http://gwyddion.net/]

	hyperspy [http://hyperspy.org/]

	nmrglue [http://www.nmrglue.com/]

	PyTrA [http://nznano.blogspot.com/2012/06/pytra-femtosecond-transient-absorption.html]

	scikit-spectra [http://hugadams.github.io/scikit-spectra/]

	specutils [http://specutils.readthedocs.io/en/latest/]

	xarray [http://xarray.pydata.org/]

Of course there are also the “default” python data-science structures:

	numpy ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html]

	pandas DataFrame [https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html]

Those with general interest in array-oriented scientific data should be aware of hdf5 [https://portal.hdfgroup.org/display/HDF5/HDF5] and netcdf [https://www.unidata.ucar.edu/software/netcdf/].

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 WrightTools	

 	
 	
 WrightTools.artists	

 	
 	
 WrightTools.collection	

 	
 	
 WrightTools.data	

 	
 	
 WrightTools.datasets	

 	
 	
 WrightTools.diagrams	

 	
 	
 WrightTools.diagrams.delay	

 	
 	
 WrightTools.diagrams.WMEL	

 	
 	
 WrightTools.exceptions	

 	
 	
 WrightTools.kit	

 	
 	
 WrightTools.units	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

_

 	
 	__init__() (WrightTools.artists.Axes method)

 	(WrightTools.artists.Figure method)

 	(WrightTools.artists.GridSpec method)

 	(WrightTools.collection.Collection method)

 	(WrightTools.data.Axis method)

 	(WrightTools.data.Channel method)

 	(WrightTools.data.Constant method)

 	(WrightTools.data.Data method)

 	(WrightTools.data.Variable method)

 	(WrightTools.diagrams.WMEL.Artist method)

 	(WrightTools.diagrams.WMEL.Subplot method)

 	(WrightTools.kit.INI method)

 	(WrightTools.kit.Spline method)

 	(WrightTools.kit.Timer method)

 	(WrightTools.kit.TimeStamp method)

A

 	
 	add_arrow() (WrightTools.diagrams.WMEL.Artist method)

 	(WrightTools.diagrams.WMEL.Subplot method)

 	add_sideplot() (in module WrightTools.artists)

 	(WrightTools.artists.Axes method)

 	apply_rcparams() (in module WrightTools.artists)

 	argmax() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

 	argmin() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

 	
 	Artist (class in WrightTools.diagrams.WMEL)

 	attrs() (WrightTools.collection.Collection property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	Axes (class in WrightTools.artists)

 	axes() (WrightTools.data.Data property)

 	Axis (class in WrightTools.data)

 	axis_expressions() (WrightTools.data.Data property)

 	axis_names() (WrightTools.data.Data property)

B

 	
 	bring_to_front() (WrightTools.data.Data method)

C

 	
 	Channel (class in WrightTools.data)

 	channel_names() (WrightTools.data.Data property)

 	channels() (WrightTools.data.Data property)

 	chop() (WrightTools.data.Data method)

 	chunkwise() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

 	class_name (WrightTools.collection.Collection attribute)

 	(WrightTools.data.Channel attribute)

 	(WrightTools.data.Data attribute)

 	(WrightTools.data.Variable attribute)

 	clear() (WrightTools.data.Data method)

 	clear_diagram() (WrightTools.diagrams.WMEL.Artist method)

 	clip() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

 	close() (WrightTools.collection.Collection method)

 	(WrightTools.data.Data method)

 	closest_pair() (in module WrightTools.kit)

 	collapse() (WrightTools.data.Data method)

 	Collection (class in WrightTools.collection)

 	colormaps (in module WrightTools.artists)

 	Constant (class in WrightTools.data)

 	constant_expressions() (WrightTools.data.Data property)

 	constant_names() (WrightTools.data.Data property)

 	
 	constant_units() (WrightTools.data.Data property)

 	constants() (WrightTools.data.Data property)

 	contour() (WrightTools.artists.Axes method)

 	contourf() (WrightTools.artists.Axes method)

 	convert() (WrightTools.data.Axis method)

 	(WrightTools.data.Channel method)

 	(WrightTools.data.Constant method)

 	(WrightTools.data.Data method)

 	(WrightTools.data.Variable method)

 	converter() (in module WrightTools.units)

 	copy() (WrightTools.collection.Collection method)

 	(WrightTools.data.Data method)

 	corner_text() (in module WrightTools.artists)

 	create_channel() (WrightTools.data.Data method)

 	create_collection() (WrightTools.collection.Collection method)

 	create_constant() (WrightTools.data.Data method)

 	create_data() (WrightTools.collection.Collection method)

 	create_dataset() (WrightTools.data.Data method)

 	create_figure() (in module WrightTools.artists)

 	create_group() (WrightTools.data.Data method)

 	create_variable() (WrightTools.data.Data method)

 	created() (WrightTools.collection.Collection property)

 	(WrightTools.data.Data property)

D

 	
 	Data (class in WrightTools.data)

 	datasets() (WrightTools.data.Data property)

 	date (WrightTools.kit.TimeStamp attribute)

 	diagonal_line() (in module WrightTools.artists)

 	
 	diff() (in module WrightTools.kit)

 	DimensionalityError

 	discover_dimensions() (in module WrightTools.kit)

 	dtype() (WrightTools.data.Channel property)

 	(WrightTools.data.Variable property)

E

 	
 	enforce_mask_shape() (in module WrightTools.kit)

 	
 	EntireDatasetInMemoryWarning

F

 	
 	fft() (in module WrightTools.kit)

 	Figure (class in WrightTools.artists)

 	file() (WrightTools.collection.Collection property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	FileExistsError

 	fillvalue() (WrightTools.data.Channel property)

 	(WrightTools.data.Variable property)

 	flatten_list() (in module WrightTools.kit)

 	fluence() (in module WrightTools.kit)

 	flush() (WrightTools.collection.Collection method)

 	(WrightTools.data.Channel method)

 	(WrightTools.data.Data method)

 	(WrightTools.data.Variable method)

 	from_Aramis() (in module WrightTools.data)

 	from_BrunoldrRaman() (in module WrightTools.data)

 	from_Cary() (in module WrightTools.collection)

 	
 	from_COLORS() (in module WrightTools.data)

 	from_directory() (in module WrightTools.collection)

 	from_JASCO() (in module WrightTools.data)

 	from_KENT() (in module WrightTools.data)

 	from_ocean_optics() (in module WrightTools.data)

 	from_PyCMDS() (in module WrightTools.data)

 	from_shimadzu() (in module WrightTools.data)

 	from_Solis() (in module WrightTools.data)

 	from_spcm() (in module WrightTools.data)

 	from_Tensor27() (in module WrightTools.data)

 	full() (WrightTools.data.Axis property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Constant property)

 	(WrightTools.data.Variable property)

 	fullpath() (WrightTools.collection.Collection property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

G

 	
 	get() (WrightTools.data.Data method)

 	get_color_cycle() (in module WrightTools.artists)

 	get_index() (in module WrightTools.kit)

 	get_nadir() (WrightTools.data.Data method)

 	get_path_matching() (in module WrightTools.kit)

 	get_scaled_bounds() (in module WrightTools.artists)

 	
 	get_symbol() (in module WrightTools.units)

 	get_valid_conversions() (in module WrightTools.units)

 	get_zenith() (WrightTools.data.Data method)

 	glob_handler() (in module WrightTools.kit)

 	gradient() (WrightTools.data.Data method)

 	grayify_cmap() (in module WrightTools.artists)

 	GridSpec (class in WrightTools.artists)

H

 	
 	heal() (WrightTools.data.Data method)

 	
 	hms (WrightTools.kit.TimeStamp attribute)

 	human (WrightTools.kit.TimeStamp attribute)

I

 	
 	id() (WrightTools.data.Data property)

 	identity() (WrightTools.data.Axis property)

 	(WrightTools.data.Constant property)

 	INI (class in WrightTools.kit)

 	
 	interact2D() (in module WrightTools.artists)

 	intersperse() (in module WrightTools.kit)

 	is_valid_conversion() (in module WrightTools.units)

 	item_names() (WrightTools.collection.Collection property)

 	(WrightTools.data.Data property)

J

 	
 	join() (in module WrightTools.data)

 	
 	joint_shape() (in module WrightTools.kit)

K

 	
 	kind() (in module WrightTools.units)

 	(WrightTools.data.Data property)

L

 	
 	label() (WrightTools.data.Axis property)

 	(WrightTools.data.Constant property)

 	(WrightTools.data.Variable property)

 	label_columns() (WrightTools.diagrams.WMEL.Artist method)

 	label_rows() (WrightTools.diagrams.WMEL.Artist method)

 	label_sectors() (in module WrightTools.diagrams.delay)

 	leastsqfitter() (in module WrightTools.kit)

 	legacy (WrightTools.kit.TimeStamp attribute)

 	
 	legend() (WrightTools.artists.Axes method)

 	level() (WrightTools.data.Data method)

 	log() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

 	log10() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

 	log2() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

M

 	
 	mag() (WrightTools.data.Channel method)

 	major_extent() (WrightTools.data.Channel property)

 	map_variable() (WrightTools.data.Data method)

 	mask_reduce() (in module WrightTools.kit)

 	masked() (WrightTools.data.Axis property)

 	(WrightTools.data.Constant property)

 	max() (WrightTools.data.Axis method)

 	(WrightTools.data.Channel method)

 	(WrightTools.data.Constant method)

 	(WrightTools.data.Variable method)

 	min() (WrightTools.data.Axis method)

 	(WrightTools.data.Channel method)

 	(WrightTools.data.Constant method)

 	(WrightTools.data.Variable method)

 	
 	minor_extent() (WrightTools.data.Channel property)

 	
 module

 	WrightTools.artists

 	WrightTools.collection

 	WrightTools.data

 	WrightTools.datasets

 	WrightTools.diagrams

 	WrightTools.diagrams.delay

 	WrightTools.diagrams.WMEL

 	WrightTools.exceptions

 	WrightTools.kit

 	WrightTools.units

 	moment() (WrightTools.data.Data method)

 	mono_resolution() (in module WrightTools.kit)

 	MultidimensionalAxisError

N

 	
 	name() (WrightTools.collection.Collection property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	NameNotUniqueError

 	natural_name() (WrightTools.collection.Collection property)

 	(WrightTools.data.Axis property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Constant property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	
 	ndim() (WrightTools.data.Axis property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Constant property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	nm_width() (in module WrightTools.kit)

 	normalize() (WrightTools.data.Channel method)

 	null() (WrightTools.data.Channel property)

O

 	
 	ObjectExistsWarning

 	offset() (WrightTools.data.Data method)

 	
 	open() (in module WrightTools)

 	orthogonal() (in module WrightTools.kit)

 	overline_colors (in module WrightTools.artists)

P

 	
 	pairwise() (in module WrightTools.kit)

 	parent() (WrightTools.collection.Collection property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	path (WrightTools.kit.TimeStamp attribute)

 	pcolor() (WrightTools.artists.Axes method)

 	pcolor_helper() (in module WrightTools.artists)

 	pcolormesh() (WrightTools.artists.Axes method)

 	plot() (WrightTools.artists.Axes method)

 	(WrightTools.diagrams.WMEL.Artist method)

 	
 	plot_colorbar() (in module WrightTools.artists)

 	plot_colormap_components() (in module WrightTools.artists)

 	plot_gridlines() (in module WrightTools.artists)

 	plot_margins() (in module WrightTools.artists)

 	points() (WrightTools.data.Axis property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Constant property)

 	(WrightTools.data.Variable property)

 	print_tree() (WrightTools.collection.Collection method)

 	(WrightTools.data.Data method)

 	prune() (WrightTools.data.Data method)

Q

 	
 	quick1D() (in module WrightTools.artists)

 	
 	quick2D() (in module WrightTools.artists)

R

 	
 	ref() (WrightTools.data.Data property)

 	regionref() (WrightTools.data.Data property)

 	remove_channel() (WrightTools.data.Data method)

 	remove_constant() (WrightTools.data.Data method)

 	remove_nans_1D() (in module WrightTools.kit)

 	
 	remove_variable() (WrightTools.data.Data method)

 	rename_channels() (WrightTools.data.Data method)

 	rename_variables() (WrightTools.data.Data method)

 	RFC3339 (WrightTools.kit.TimeStamp attribute)

 	RFC5322 (WrightTools.kit.TimeStamp attribute)

S

 	
 	save() (WrightTools.collection.Collection method)

 	(WrightTools.data.Data method)

 	savefig() (in module WrightTools.artists)

 	set_ax_labels() (in module WrightTools.artists)

 	set_ax_spines() (in module WrightTools.artists)

 	set_constants() (WrightTools.data.Data method)

 	set_fig_labels() (in module WrightTools.artists)

 	shape() (WrightTools.data.Axis property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Constant property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	share_nans() (in module WrightTools.kit)

 	(WrightTools.data.Data method)

 	signed() (WrightTools.data.Channel property)

 	size() (WrightTools.data.Axis property)

 	(WrightTools.data.Channel property)

 	(WrightTools.data.Constant property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	
 	slices() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

 	smooth() (WrightTools.data.Data method)

 	smooth_1D() (in module WrightTools.kit)

 	source() (WrightTools.data.Data property)

 	Spline (class in WrightTools.kit)

 	split() (WrightTools.data.Data method)

 	std() (WrightTools.data.Constant property)

 	stitch_to_animation() (in module WrightTools.artists)

 	string2identifier() (in module WrightTools.kit)

 	Subplot (class in WrightTools.diagrams.WMEL)

 	subplots_adjust() (in module WrightTools.artists)

 	svd() (in module WrightTools.kit)

 	symmetric_root() (WrightTools.data.Channel method)

 	(WrightTools.data.Variable method)

 	symmetric_sqrt() (in module WrightTools.kit)

T

 	
 	Timer (class in WrightTools.kit)

 	TimeStamp (class in WrightTools.kit)

 	timestamp_from_RFC3339() (in module WrightTools.kit)

 	
 	transform() (WrightTools.data.Data method)

 	trim() (WrightTools.data.Channel method)

 	TypeError

U

 	
 	unique() (in module WrightTools.kit)

 	units() (WrightTools.data.Channel property)

 	(WrightTools.data.Data property)

 	(WrightTools.data.Variable property)

 	
 	units_kind() (WrightTools.data.Axis property)

 	(WrightTools.data.Constant property)

 	UnitsError

 	unix (WrightTools.kit.TimeStamp attribute)

 	update() (WrightTools.data.Data method)

V

 	
 	valid_index() (in module WrightTools.kit)

 	value() (WrightTools.data.Constant property)

 	ValueError

 	Variable (class in WrightTools.data)

 	
 	variable_names() (WrightTools.data.Data property)

 	variables() (WrightTools.data.Axis property)

 	(WrightTools.data.Constant property)

 	(WrightTools.data.Data property)

 	VisibleDeprecationWarning

W

 	
 	
 WrightTools.artists

 	module

 	
 WrightTools.collection

 	module

 	
 WrightTools.data

 	module

 	
 WrightTools.datasets

 	module

 	
 WrightTools.diagrams

 	module

 	
 WrightTools.diagrams.delay

 	module

 	
 	
 WrightTools.diagrams.WMEL

 	module

 	
 WrightTools.exceptions

 	module

 	
 WrightTools.kit

 	module

 	
 WrightTools.units

 	module

 	WrightToolsException

 	WrightToolsWarning

 	write_direct() (WrightTools.data.Variable method)

 	WrongFileTypeWarning

Z

 	
 	zoom() (WrightTools.data.Data method)

 	
 	zoom2D() (in module WrightTools.kit)

Writing a New From Function

From functions are the entry point into the WrightTools ecosystem.
In order to use all of the data manipulations and plotting tools to their fullest, you
must have a data object to work with.
These functions come in two flavors: data from functions and collection from functions.

Data from functions create a single data object.
If multiple data objects would be generated, they should be wrapped in a collection, and be placed
in the WrightTools.collection package instead.
The process is much the same, other than the wrapper object.
Here, we will focus on the more common data flavor of from function.

Additionally, if there is extra processing that needs to be done at import time, it should be
questioned whether there is a raw form that is a data from function, and the processing can
then be placed in a collection from function which returns both the raw form and processed form.

Ideally any processing steps can be performed with functions of data, not in the import stage.
Additional processing is more tolerated in collection from functions.

We will walk through by way of example, using from_JASCO():

--- import --
import os
import pathlib
import numpy as np
from ._data import Axis, Channel, Data
from .. import exceptions as wt_exceptions
--- define ---
__all__ = ["from_JASCO"]
--- from function --
def from_JASCO(filepath, name=None, parent=None, *, verbose=True):
 """Create a data object from JASCO UV-Vis spectrometers.

 Parameters

 filepath : path-like
 Path to .txt file.
 Can be either a local or remote file (http/ftp).
 Can be compressed with gz/bz2, decompression based on file name.
 name : string (optional)
 Name to give to the created data object. If None, filename is used.
 Default is None.
 parent : WrightTools.Collection (optional)
 Collection to place new data object within. Default is None.
 verbose : boolean (optional)
 Toggle talkback. Default is True.

 Returns

 data
 New data object(s).
 """
 # parse filepath
 filestr = ps.fspath(filepath)
 filepath = pathlib.Path(filepath)
 if not ".txt" in filepath.suffixes:
 wt_exceptions.WrongFileTypeWarning.warn(filepath, ".txt")
 # parse name
 if not name:
 name = os.path.basename(filepath).split(".")[0]
 # create data
 kwargs = {"name": name, "kind": "JASCO", "source": filestr}
 if parent is None:
 data = Data(**kwargs)
 else:
 data = parent.create_data(**kwargs)
 # array
 ds = np.DataSource(None)
 f = ds.open(filestr, "rt")
 arr = np.genfromtxt(f, skip_header=18).T
 f.close()
 # add variable and channels
 data.create_variable(name="energy", values=arr[0], units="nm")
 data.create_channel(name="signal", values=arr[1])
 data.transform("energy")
 # finish
 if verbose:
 print("data created at {0}".format(data.fullpath))
 print(" range: {0} to {1} (nm)".format(data.energy[0], data.energy[-1]))
 print(" size: {0}".format(data.size))
 return data

Function Signature and Docstring

By convention, the function name should be from_<kind>.
The first argument should be a file path to the data file being read in.
If possible, this should be the only required argument to the function.
Ideally, from_ functions are free of additional processing, except what is needed to
faithfully represent the data object in it’s raw form.
Options which toggle or adjust processing are discouraged, as they should be performed by
users after instantiation of the object.
If there are specialized functions, consider adding them as separate functions elsewhere,
such as the WrightTools.data.Data class.

The other standard, optional arguments are name, parent, and verbose.
Where possible, the default name should be derived from metadata in the file itself.
If that is not possible, it should derive from the filename itself.
Consider using string2identifier() to ensure that the name is a valid
python identifier.

By default, a brand new data object should be created at root of a new wt5 file.
This can be overwritten by passing a Collection object as parent.

Finally, verbose is a boolean toggle for printing to standard out.
By convention, this is True by default.
Additionally, verbose and any custom keyword arguments should be keyword-only arguments.

The function should have a docstring that documents all parameters.
The summary line should tell about the source of the data.
Feel free to add additional information in the body of the docstring, where appropriate.
Check out the existing examples for formatting, such as the example from from_JASCO().

def from_JASCO(filepath, name=None, parent=None, *, verbose=True):
 """Create a data object from JASCO UV-Vis spectrometers.

 Parameters

 filepath : path-like
 Path to .txt file.
 Can be either a local or remote file (http/ftp).
 Can be compressed with gz/bz2, decompression based on file name.
 name : string (optional)
 Name to give to the created data object. If None, filename is used.
 Default is None.
 parent : WrightTools.Collection (optional)
 Collection to place new data object within. Default is None.
 verbose : boolean (optional)
 Toggle talkback. Default is True.

 Returns

 data
 New data object(s).
 """

Validation

A few simple validation checks can be performed.
If it is not possible to read a data object, it should raise a WrightTools exception. See exceptions.
If it is simply an unexpected feature, such as unusual file extension, it should raise a warning.
WrightTools includes a specific warning for unexpected file type: WrongFileTypeWarning.
We use pathlib.PurePath.suffixes [https://docs.python.org/3/library/pathlib.html#pathlib.PurePath.suffixes] to allow for compound file extensions like .txt.gz.
You should also validate the name, and extract the default in this step.

The reason to have both filestr and filepath is that pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path] objects
do not work well for urls (particularly on Windows), but pathlib is nice for performing validation.

parse filepath
filestr = os.fspath(filepath)
filepath = pathlib.Path(filepath)
if not ".txt" in filepath.suffixes:
 wt_exceptions.WrongFileTypeWarning.warn(filepath, ".txt")
parse name
if not name:
 name = filepath.name.split(".")[0]

Create the Data object

Instantiating the new data object involves inspecting the parent argument.
By convention, arguments to the instantiation are passed in as a keyword argument dictionary.
This should include, minimally, the name (described above), kind
(specific to the particular function), and source (typically the local file path)
If the time of creation for the data is in the metadata, it should be added here, in RFC3339 [https://www.ietf.org/rfc/rfc3339.txt] format.
The TimeStamp class has a handy way of getting timestamps in this format.
Additional keyword arguments not expected by either Data or
Group initialization are added directly to the attrs dictionary.

kwargs = {"name": name, "kind": "JASCO", "source": filestr}
if parent is None:
 data = Data(**kwargs)
else:
 data = parent.create_data(**kwargs)

Add Metadata

Additional pieces of metadata can be added into the attrs dictionary of the data object.
This can include text, numbers or even arrays.
These are arbitrary, and can be accessed like a dictionary.
Avoid using the “privileged” attributes for tasks other than their pre-defined purpose,
as overwriting may cause unexpected behavior or for them to be overwritten internally:

	name

	class

	created

	kind

	__version__

	item_names

	axes

	constants

	source

	variable_names

	channel_names

	label

	units

	signed

	null

	filepath

One way to add them is to add to the kwargs dictionary in the previous section.
Alternatively, they can be added directly:

data.attrs["key"] = "value"
data.attrs.update(dictionary)

Create Variables and Channels

Creating variables (things you set) and channels (things you measure) is painless.
Once you have a numpy array, (see tools such as numpy.genfromtxt() [https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt]), all you have to
do is add a name, and (optionally) units.

Units are supported for both variables and channels, though tend to be more common on variables.
Supported units can be found in units.
If there are units important to you that are not yet supported, please file an issue [https://github.com/wright-group/WrightTools/issues].

For one-dimensional data formats, this is particularly easy:

array
ds = np.DataSource(None)
f = ds.open(filestr, "rt")
arr = np.genfromtxt(f, skip_header=18).T
f.close()
add variable and channels
data.create_variable(name="energy", values=arr[0], units="nm")
data.create_channel(name="signal", values=arr[1])

numpy.DataSource [https://numpy.org/doc/stable/reference/generated/numpy.DataSource.html#numpy.DataSource] is a class which provides transparent decompression and remote file retrieval.
numpy.genfromtxt() [https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html#numpy.genfromtxt] will handle this itself, however it will leave the downloaded files in the
working directory, and opening explicitly allows you to use the file more directly as well.
Using np.DataSource(None) causes it to use temporary files which are removed automatically.
Opening in "rt" mode ensures that you are reading as text.

Parsing multidimensional datasets (and in particular formats which allow arbitrary dimensionality)
provides real benefit, but becomes a much more arduous task to generalize.
This is where it becomes important to consider the shape and units of the Data object.
All variables and channels must be the same rank (ndim) and broadcast together to get the full shape.
If variables in particular can be collapsed to a lower dimension, they should be; this is accomplished by placing a 1 in the shape.

For particularly complex parsing, see from_PyCMDS(),
from_KENT(), and from_COLORS().
These are existing multidimensional formats used by the Wright Group, and can provide some insights.
from_Aramis() is an example of a multidimensional binary data format.
Feel free to reach out to the maintainers (via our issue tracker [https://github.com/wright-group/WrightTools/issues]) if you have any questions.

Transform to Create Axes

To get Data objects to behave as expected, they should be transformed to the natural axes of the
data itself.
Axes are algebraic combinations of variables (linear combinations are guaranteed to be supported).

data.transform("energy")

You may also add constants to your data object in your from function.
These are expressions of variables which have a constant value
(potentially with noise) in the whole of the data.

data.set_constants("x", "y-z")

Verbose Output

It is expected that From functions print out information at the end.
This should include the file path where the data is made, and a few lines which help users confirm
that they imported the correct data object.
Printing should be no more than about 5 lines.

For one-dimensional data, the print output tends to be the range of the axis and the size:

finish
if verbose:
 print("data created at {0}".format(data.fullpath))
 print(" range: {0} to {1} (nm)".format(data.energy[0], data.energy[-1]))
 print(" size: {0}".format(data.size))
return data

For multidimensional formats, it tends to be the axes and shape:

return
if verbose:
 print("data created at {0}".format(data.fullpath))
 print(" axes: {0}".format(data.axis_names))
 print(" shape: {0}".format(data.shape))
return data

Also remember to return the data object, otherwise it will not be usable immediately.

Contributing for Others to Use

Once you have the function, it is useful to share your code for others to use.
If you wish for your function to be included in the upstream code, take the following steps:

	Read our Contributing page to learn how to submit a Pull Request.

	Place your function in the WrightTools/data folder with the filename _<lowercase kind>.py

	Add __all__ = ["from_<kind>"] to the file.

	Import your file and add a line to the __all__ defined in WrightTools/data/__init__.py

	Add an example dataset in an appropriately labeled folder in WrightTools/datasets

	Add your dataset to WrightTools/datasets/__init__.py, e.g.:

JASCO = DatasetContainer()
JASCO._from_files("JASCO")

	Add your data kind to __all__ in datasets/__init__.py

	Add your dataset (with citation, if appropriate) to the table in docs/datasets.rst

	Write a test which calls your from_<kind> function at tests/data/from_<kind>.py (See examples in that directory)

	Submit your Pull Request

If you have any questions, feel free to contact us via our issue tracker [https://github.com/wright-group/WrightTools/issues].

 artists-3.png
o perovskite_TA

0.049

200 0.030

0.020
150 i
\ 0.010

100

Qa
0.000 O

T21(fs)

-0.020
-0.030

50 \ -0.010 ©
(
)

-0.040

100 -0.049

16 17 18 19 20 21

hwi =hwm (eV)

huz(ev) 167

artists-4.png
L e—
cubehelix L —
L ——

default I ——
— ——
EOC————— C—

greyscale

invisible

]
 ———————
S ———————

solminantl e —
L —————————
e
S

isoluminant2
isoluminant3 B
signed_old Q|
el e —
schor D
skyebar3 s]
e
| — —

artists-2_00.png
200

150

100

50

T21(fs)

=50

-100

perovskite_TA
hw, = 1.7eV

0.05
0.04
0.03
0.02
0.01
0.00 8
-0.01
-0.02
-0.03
-0.04
-0.05

artists-2_01.png
perovskite_TA
To1 = 0.821fs

ol 0 o ll ™

0.05
0.04
0.03
0.02
0.01
0.00
-0.01
-0.02
-0.03
-0.04
-0.05

doD

artists-1_00.png
doD

0.04

0.02

0.00

-0.02

-0.04

perovskite_TA
hw, = 1.7eV, 1517 = 0.821fs

artists-1_01.png
doD

0.04

0.02

0.00

-0.02

-0.04

perovskite_TA
hwi = 1.65eV, hw, =

1.7ev

quickstart-1.png
ai0

025

020

015

010

005

000

_001_dat

Ay = 621nm, T, = —120fs

s o

& &
A1 =Am(nm)

s
S

quickstart-2.png
_001_dat
Ay = 621nm

0.26
023
0.20
0.18
0.15
0132
0.10
0.08
0.05
0.03
0.00

quickstart-3.png
T, (fs)

200
100

100
200
300
400
500

600

600

650 700

A1 =Am(nm)

750

600

650 700

A1 =Am(nm)

750

quickstart-4.png
_001_dat
Ay = 621nm

0.10
0.09
0.08
0.07
0.06
0.052
0.04
0.03
0.02
0.01
0.00

quickstart-5.png
_001_dat
T, = —120fs

0.4

0.2

0.07

hw,; — Ay, (eV)

-0.2

-0.4

Q
AN

hwi =hwn, (eV)

e

0.26
023
0.20
0.18
0.15
0132
0.10
0.08
0.05
0.03

0.00

_images/WrightTools-collection-from_Cary-1.png
abs

samplel

_images/WrightTools-data-from_Tensor27-1.png
signal

0020

0015

0010

0.005

0.000

~0.005

CuPCtS_powder_ATR

_images/artists-1_00.png
doD

0.04

0.02

0.00

-0.02

-0.04

perovskite_TA
hw, = 1.7eV, 1517 = 0.821fs

_images/artists-2_01.png
perovskite_TA
To1 = 0.821fs

ol 0 o ll ™

0.05
0.04
0.03
0.02
0.01
0.00
-0.01
-0.02
-0.03
-0.04
-0.05

doD

_images/artists-3.png
o perovskite_TA

0.049

200 0.030

0.020
150 i
\ 0.010

100

Qa
0.000 O

T21(fs)

-0.020
-0.030

50 \ -0.010 ©
(
)

-0.040

100 -0.049

16 17 18 19 20 21

hwi =hwm (eV)

huz(ev) 167

_images/artists-1_01.png
doD

0.04

0.02

0.00

-0.02

-0.04

perovskite_TA
hwi = 1.65eV, hw, =

1.7ev

_images/artists-2_00.png
200

150

100

50

T21(fs)

=50

-100

perovskite_TA
hw, = 1.7eV

0.05
0.04
0.03
0.02
0.01
0.00 8
-0.01
-0.02
-0.03
-0.04
-0.05

_images/quickstart-1.png
ai0

025

020

015

010

005

000

_001_dat

Ay = 621nm, T, = —120fs

s o

& &
A1 =Am(nm)

s
S

_images/quickstart-2.png
_001_dat
Ay = 621nm

0.26
023
0.20
0.18
0.15
0132
0.10
0.08
0.05
0.03
0.00

_images/artists-4.png
L e—
cubehelix L —
L ——

default I ——
— ——
EOC————— C—

greyscale

invisible

]
 ———————
S ———————

solminantl e —
L —————————
e
S

isoluminant2
isoluminant3 B
signed_old Q|
el e —
schor D
skyebar3 s]
e
| — —

_images/logo.png

_images/quickstart-3.png

