WrightTools.data.Channel
- class WrightTools.data.Channel(parent, id, **kwargs)[source]
Channel.
- __init__(parent, id, *, units=None, null=None, signed=None, label=None, label_seed=None, **kwargs)[source]
Construct a channel object.
- Parameters:
values (array-like) – Values.
name (string) – Channel name.
units (string (optional)) – Channel units. Default is None.
null (number (optional)) – Channel null. Default is None (0).
signed (booelan (optional)) – Channel signed flag. Default is None (guess).
label (string.) – Label. Default is None.
label_seed (list of strings) – Label seed. Default is None.
**kwargs – Additional keyword arguments are added to the attrs dictionary and to the natural namespace of the object (if possible).
Methods
__init__
(parent, id, *[, units, null, ...])Construct a channel object.
argmax
()Index of the maximum, ignorning nans.
argmin
()Index of the minimum, ignoring nans.
asstr
([encoding, errors])Get a wrapper to read string data as Python strings:
astype
(dtype)Get a wrapper allowing you to perform reads to a different destination type, e.g.:
chunkwise
(func, *args, **kwargs)Execute a function for each chunk in the dataset.
clip
([min, max, replace])Clip values outside of a defined range.
convert
(destination_units)Convert units.
fields
(names, *[, _prior_dtype])Get a wrapper to read a subset of fields from a compound data type:
flush
()Flush the dataset data and metadata to the file.
iter_chunks
([sel])Return chunk iterator.
len
()The size of the first axis.
log
([base, floor])Take the log of the entire dataset.
log10
([floor])Take the log base 10 of the entire dataset.
log2
([floor])Take the log base 2 of the entire dataset.
mag
()Channel magnitude (maximum deviation from null).
make_scale
([name])Make this dataset an HDF5 dimension scale.
max
()Maximum, ignorning nans.
min
()Minimum, ignoring nans.
normalize
([mag])Normalize a Channel, set null to 0 and the mag to given value.
read_direct
(dest[, source_sel, dest_sel])Read data directly from HDF5 into an existing NumPy array.
refresh
()Refresh the dataset metadata by reloading from the file.
resize
(size[, axis])Resize the dataset, or the specified axis.
slices
()Returns a generator yielding tuple of slice objects.
symmetric_root
([root])trim
(neighborhood[, method, factor, ...])Remove outliers from the dataset.
virtual_sources
()Get a list of the data mappings for a virtual dataset
write_direct
(source[, source_sel, dest_sel])Write data directly to HDF5 from a NumPy array.
Attributes
Attributes attached to this object
chunks
Dataset chunks (or None)
compression
Compression strategy (or None)
compression_opts
Compression setting.
dims
Access dimension scales attached to this dataset.
Numpy dtype representing the datatype
external
External file settings.
Return a File instance associated with this object
Fill value for this dataset (0 by default)
fletcher32
Fletcher32 filter is present (T/F)
file and internal structure.
id
Low-level identifier appropriate for this object
is_scale
Return
True
if this dataset is also a dimension scale.is_virtual
Check if this is a virtual dataset
Maximum deviation from null.
maxshape
Shape up to which this dataset can be resized.
Minimum deviation from null.
Return the full name of this object.
Natural name of the dataset.
nbytes
Numpy-style attribute giving the raw dataset size as the number of bytes
Numpy-style attribute giving the number of dimensions
Parent.
Squeezed array.
ref
An (opaque) HDF5 reference to this object
regionref
Create a region reference (Datasets only).
scaleoffset
Scale/offset filter settings.
Numpy-style shape tuple giving dataset dimensions
shuffle
Shuffle filter present (T/F)
Numpy-style attribute giving the total dataset size
Units.